
SESUG 2011

1

PAPER BB-09

The SAS
®
 Magical Dictionary Tour

Linda Libeg, Westat, Rockville, MD

ABSTRACT

There are many instances when a large number of variables in a SAS
®

dataset need to be renamed, ordered,
dropped, or just identified. If variable names are not assigned in chronological or positional order, the task of
programming these names into your code can be laborious. A simple Proc SQL statement can be used to access
the read-only SAS

data dictionary tables and save you programming steps.

This paper presents numerous ways you can modify a Proc SQL statement that reads the SAS

data dictionary tables

and produce macro output to be used in later programming steps. So, “Roll-up” to the SAS Magical Dictionary Tour
and learn how to extract various characteristics from your SAS dataset.

INTRODUCTION
SAS data dictionary tables are read-only views that contain Metadata about SAS data available in the current SAS
session. Information pertaining to SAS libraries, datasets, macros, external files, and indexes are just some of the
information that can be captured from SAS dictionary tables and assist in simplifying program code. There are
twenty-nine (29) dictionary tables in SAS v9.2. The names and descriptions of each are listed in Appendix A. All of
these dictionary tables can also be referenced using views from the SASHELP library. A crosswalk between the
dictionary table names and the SASHELP view names is listed in Appendix B. Although the SASHELP library is very
useful, the primary purpose of this paper is to discuss the procedures to access the information through PROC SQL
using the DICTIONARY libref.

VIEWING DICTIONARY METADATA
Using the SELECT statement within PROC SQL, the SAS Metadata can be retrieved. A list of the 29 tables can be
identified, the member data within a specific table can be retrieved, a description of the table structure can be
viewed, or a SAS dataset of the dictionary information can be created.

A PROC SQL statement can return the 29 dictionary table member names plus information relevant to each table.

proc sql;

 select * from dictionary.dictionaries;

quit;

A PROC SQL statement can return only the dictionary table member names of the 29 tables.

proc sql;

 select unique memname from dictionary.dictionaries;

quit;

The content of a specific dictionary table can be viewed using the same PROC SQL statement, by replacing
“dictionaries” with a table name. For Instance, the PROC SQL statement below returns the member names from the
dictionary table, “members”.

proc sql;

 select memname from dictionary.members;

quit;

A PROC SQL statement and the CREATE TABLE statements can be used to create a SAS dataset containing the
information stored in the dictionary tables. For example, here we create the SAS dataset, “dmembers”, containing
the member names from the dictionary table,“members”.

proc sql;

 create table dmembers as

 select memname from dictionary.members;

quit;

SESUG 2011

2

The PROC SQL “DESCRIBE TABLE” command can be used to view the structure of a dictionary table. This listing
is output to the .log file.

proc sql

 describe table dictionary.columns;

quit;

The real magic of dictionary tables is the power to manipulate a PROC SQL statement. Using a PROC SQL query
and the SQL keywords SELECT, INTO, SEPARATED BY, FROM and WHERE, the SAS dictionary tables can be
read and information can be extracted and placed into a macro variable. The format for the PROC SQL code is:

PROC SQL;

 Select (attribute)

 INTO :(macro variable name) SEPARTED BY „ „

 FROM DICTIONARY.(dictionary name)

 WHERE libname = (quoted library name in upper case) and

 Memname = (quoted member name in upper case);

Quit;

The remainder of this paper will focus mainly on using this PROC SQL statement to extract information from the
“Columns” dictionary table. The paper will briefly show that the PROC SQL statement can be used with other
dictionary tables. Many examples will illustrate how this magical code can be used to simplify a program.

DICTIONARY.COLUMNS
Dictionary columns contain variable information such as name, type, length, and label, for all SAS datasets in the
current SAS session. Attributes for each variable in the dictionary.columns view can be identified using the
DESCRIBE command. Below is the listing generated in a .log file when submitting the PROC SQL code. Also listed
below is a table describing the information contained in each variable of the columns table.

proc sql;

 describe table dictionary.columns;

quit;

create table DICTIONARY.COLUMNS

 (

 libname char(8) label='Library Name',

 memname char(32) label='Member Name',

 memtype char(8) label='Member Type',

 name char(32) label='Column Name',

 type char(4) label='Column Type',

 length num label='Column Length',

 npos num label='Column Position',

 varnum num label='Column Number in Table',

 label char(256) label='Column Label',

 format char(49) label='Column Format',

 informat char(49) label='Column Informat',

 idxusage char(9) label='Column Index Type',

 sortedby num label='Order in Key Sequence',

 xtype char(12) label='Extended Type',

 notnull char(3) label='Not NULL?',

 precision num label='Precision',

 scale num label='Scale',

 transcode char(3) label='Transcoded?'

);

quit;

VARIABLE DESCRIPTION

libname Contains the library name which must be reference in upper case. Temporary SAS datasets are

 referenced using “WORK”.

memname Contains the member name referenced in upper case for SAS. Other engines such as

 ACCESS and EXCEL preserve the name as case sensitive.

memtype Contains the member type. [DATA or VIEW]

name Contains the variable names in the dataset. The case of the name is stored as it is in the dataset

SESUG 2011

3

 with the exception of transport datasets that are stored in upper-case.

type Contains the variable type in lower case. [“num” for numeric and “char” for character].

length Contains the length of the variable.

npos Contains the offset of the variable position within the observation. [0, 2, 4, 10…]

varnum Contains the number in the table. [1, 2, 3…]

label Contains the variable label.

format Contains the format name assigned to the variable.

informat Contains the informat name assigned to the variable.

idxusage Contains the index type in upper case. [SIMPLE, COMPOSITE, BOTH]

sortedby Contains the key sequence order using numeric values starting with 0. Descending sort order is

 referenced with negative numbers.

xtype Contains the extended type.

notnull Contains references as to whether or not Null values are allowed. [“no” and “yes”].

precision Contains precision information.

scale Contains scale information.

transcode Contains references as to whether or not transcoding was done. [“yes” and “no”]

EXAMPLE 1

A macro variable named, “varname”, is created that stores the names of all variables in the SAS temporary dataset,
MYDATA. Using the PROC SQL INTO and SEPARATED BY clauses, a variable can be created and stored in a
macro variable for use in another programming step. The value in the “separated by” clause can contain values
other than a blank.

proc sql noprint;

 Select name

 Into :varname separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”;

quit;

EXAMPLE 2

You can expand the PROC SQL statement in Example 1 to subset the names in the macro variable to only those
names needed. The PROC SQL statement in example 2 subsets the names of numeric variables on the dataset,
MYDATA, that begin with „MP‟; and, will store the names in the macro variable, “varname”. The „TYPE‟ attribute
“num” subsets the names in the macro variable to only variables containing numeric data. If variables with character
data were desired, then the „TYPE‟ attribute would be changed to “char”. The type attribute must be reference in the
PROC SQL statement in quotes and lower case. Once the list of macro variables has been created, the list can be
used in a number of ways. For instance, the macro variable can hold a list of variable names to include in a PROC
FREQ statement or in a DROP or KEEP statement.

proc sql noprint;

 Select name

 Into :varname separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And substr(strip(name),1,2) = „MP‟ and strip(type) = “num”;

quit;

proc freq data=MYDATA;

 Tables &varname./missing;

run;

data MYDATA;

 Set MYDATA(drop=&varname);

run;

EXAMPLE 3

An expression can be used in the SELECT statement and stored in the macro variable. This PROC SQL statement
will create a macro variable containing an expression that renames the character variable names beginning with „MP‟
and having a length greater than 2 to begin with „T_‟. The macro variables “varname” can then be used in a data
statement to rename a list of variables in the SAS dataset.

SESUG 2011

4

proc sql noprint;

 Select strip(name) || „ = T_‟ || trim(name)

 Into :varname separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And substr(strip(name),1,2) = „MP‟ and strip(type) = “char” and length > 2;

quit;

data MYDATA;

 Set MYDATA(rename=(&varname.));

run;

EXAMPLE 4

The next example creates an expression that contains a statement to convert variables from numeric to character
and places the expression in the macro variable, “varname”. The macro variable containing this expression can be
used in the data statement to convert the specified variables to character.

proc sql noprint;

 Select „T_‟ || strip(name) || „ = put(‟ || strip(name) || „,2.);‟

 Into :varname separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And substr(strip(name),1,2) = „MP‟ and strip(type) = “num”;

quit;

data MYDATA2;

 Set MYDATA;

 &varname

run;

EXAMPLE 5

The next example assigns an “if” expression to the macro variable, “varname”. This “if” statement reassigns a value
of „.‟ to blank for all character variables on the SAS dataset, MYDATA, that begin with „MP‟. The expression in the
macro variable can be used in a data statement.

proc sql noprint;

 Select „if „ || strip(name) || „ = “.” Then „ || strip(name) || „ = “ “;‟

 Into :varname separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And substr(strip(name),1,2) = „MP‟ and strip(type) = “char”;

quit;

data MYDATA2;

 Set MYDATA;

 &varname

run;

EXAMPLE 6

The information within the dictionary columns table can be used to return a Boolean value indicating whether or not a
variable exists on the file. If the variable, MAGIC, exists in the SAS dataset, MYDATA, then the macro variable,
“varexist”, will contains a value of 1, otherwise the macro variable, “varexist”, will contain a value of 0.

%macro magic;

 proc sql noprint;

 Select strip(put(count(*),8.))

 Into :varexist

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And upcase(NAME) = „MAGIC‟;

 quit;

SESUG 2011

5

%if &varexist %then %do;

 Proc print data=MYDATA;

 Var MAGIC;

 run;

%end;

%mend;

%magic

EXAMPLE 7

Two macro variables can be created in the same PROC SQL statement. The count of variables is stored in
“numvars” and all identified variable names are stored in the macro variable “varnames”. If the number of character
variables on the dataset MYDATA is 5, then “numvars” would contain the number „5‟ and ”varnames” would contain a
list of these 5 variable names.

%macro magic;

 proc sql noprint;

 Select count(*), strip(name)

 Into :numvars, :varnames separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And type = “char”;

 quit;

%if &numvars > 0 %then %do;

 %put „numvars=‟ &numvars „varname=‟ &varnames;

 proc freq data=MYDATA;

 Tables &varnames./missing;

 run;

%end;

%mend;

%magic

EXAMPLE 8

A PROC SQL statement can use the FORMAT attribute to identify a specific format type. In this example, the date
variables are being retrieved from the SAS dataset and placed in the macro variable, “datevars”.

proc sql noprint;

 Select name

 Into :datevars separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 and (upcase(FORMAT) CONTAINS „DATE‟

 or upcase(FORMAT) CONTAINS „MMDD‟

 or upcase(FORMAT) CONTAINS „YYMM‟);

quit;

%put „datevars=‟ &datevars;

proc freq data=MYDATA;

 tables &datevars./missing;

run;

EXAMPLE 9

The PROC SQL statement above can be modified to find the names of variables with formats and also the format
name associated with each identified variable. The macro variable “varname” will contain a list of all variables that
are formatted and the macro variable “varfmt” will contain the variable name concatenated with the format name.

proc sql noprint;

 Select name, name || „ „ || format

SESUG 2011

6

 Into :varname separated by „ „, :varfmt separated by „ „

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”

 And FORMAT ^= “ “;

quit;

%put „varname=‟ &varname „varfmt=‟ &varfmt;

Proc freq data=MYDATA;

 tables &varname./missing;

 Format &varfmt;

run;

EXAMPLE 10

The next example uses parameters when calling the macro, Magic. A parameter for the dataset name and a second
parameter for the “by” variable are sent in the macro call. The PROC SQL statement uses resolved values of these
two parameters to assign the type (“char” or “num”) of the „by‟ variable to the macro variable, “byvartype”. The
macro variable can then be used in another SAS procedure. This example uses the type assignment in the macro
variable to exclude the missing data for the specified “by” variable in a PROC FREQ statement.

In the first call to this macro, frequencies on the dataset are to be produced by GENDER. Assuming GENDER has
the values „M‟ for male and „F‟ for female, the macro variable, “byvartype” will be assigned the value “char” by the
PROC SQL statement. When the PROC FREQ statement is executed, the condition, „where &byvar ne “ “‟ is
resolved.

In the second call to this macro, frequencies on the dataset are to be produced by REGION. Assuming that
REGION contains the numeric values 1-4, the macro variable, “byvartype” will be assigned the value “num” by the
PROC SQL statement. When the PROC FREQ statement is executed, the condition, „where &byvar ne .‟ is
resolved.

%macro magic(dsname,byvar);

 proc sql noprint;

 Select type

 Into :byvartype

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = %upcase(“&dsname.”) and name =

 %upcase(“&byvar.”);

 quit;

 proc sort data=&dsname;

 by &byvar;

 run;

 proc freq data=&dsname;

 by &byvar;

 %if &byvartype = char %then where &byvar ne “ “;

 %else where &byvar ne .;

 ;

 Tables _all_/missing;

 run;

%mend;

%magic(MYDATA,GENDER)

%magic(MYDATA,REGION)

EXAMPLE 11

The following example creates sequential macro variables containing the variables names in the SAS dataset.
Although statement allows up to 9999 macro variables, macro variables are only created for the number of variables
identified in the SAS dataset.

%macro Magic;

 proc sql noprint;

 Select name

SESUG 2011

7

 Into :var1 - :var9999

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”;

 quit;

 proc sql noprint;

 Select count(*)

 Into :varcnt

 From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”;

 quit;

 %do i = 1 %to &varcnt;

 %put “var&i=” &&var&i;

 %end;

%mend;

%magic

EXAMPLE 12

As mentioned in the “Viewing Dictionary Metadata” section, a SAS dataset can also be created that contains
information extracted from a dictionary table. This example creates the SAS dataset “vartable” that contains the
names of all variables in the SAS dataset, MYDATA.

proc sql noprint;

 Create table vartable as

 Select name From DICTIONARY.COLUMNS

 Where LIBNAME eq “WORK” and MEMNAME = “MYDATA”;

quit;

Proc print data=vartable;

 Title „Listing of Variable Names in MYDATA File‟;

run;

DICTIONARY.TABLES
Information can also be obtained from SAS dictionaries other than the column table. Dictionary tables contain
information such as the library name, the member type, the creation date, the number of observations, and the
number of variables. The information is available for every SAS dataset present in the current SAS session.

The PROC SQL “DESCRIBE TABLE” command can be used to view the structure of a dictionary table. This listing
is output to the .log listing.

proc sql;

 describe table dictionary.tables;

quit;

create table DICTIONARY.TABLES

 (

 libname char(8) label='Library Name',

 memname char(32) label='Member Name',

 memtype char(8) label='Member Type',

 dbms_memtype char(32) label='DBMS Member Type',

 memlabel char(256) label='Data Set Label',

 typemem char(8) label='Data Set Type',

 crdate num format=DATETIME informat=DATETIME label='Date Created',

 modate num format=DATETIME informat=DATETIME label='Date Modified',

 nobs num label='Number of Physical Observations',

 obslen num label='Observation Length',

 nvar num label='Number of Variables',

 protect char(3) label='Type of Password Protection',

 compress char(8) label='Compression Routine',

 encrypt char(8) label='Encryption',

 npage num label='Number of Pages',

 filesize num label='Size of File',

SESUG 2011

8

 pcompress num label='Percent Compression',

 reuse char(3) label='Reuse Space',

 bufsize num label='Bufsize',

 delobs num label='Number of Deleted Observations',

 nlobs num label='Number of Logical Observations',

 maxvar num label='Longest variable name',

 maxlabel num label='Longest label',

 maxgen num label='Maximum number of generations',

 gen num label='Generation number',

 attr char(3) label='Data Set Attributes',

 indxtype char(9) label='Type of Indexes',

 datarep char(32) label='Data Representation',

 sortname char(8) label='Name of Collating Sequence',

 sorttype char(4) label='Sorting Type',

 sortchar char(8) label='Charset Sorted By',

 reqvector char(24) format=$HEX48 informat=$HEX48 label='Requirements Vector',

 datarepname char(170) label='Data Representation Name',

 encoding char(256) label='Data Encoding',

 audit char(3) label='Audit Trail Active?',

 audit_before char(3) label='Audit Before Image?',

 audit_admin char(3) label='Audit Admin Image?',

 audit_error char(3) label='Audit Error Image?',

 audit_data char(3) label='Audit Data Image?',

 num_character num label='Number of Character Variables',

 num_numeric num label='Number of Numeric Variables'

)

EXAMPLE 1

The number of observations in a dataset can be retrieved by selecting the “nobs” attribute from the Dictionary.tables.
In this example, the macro variable, ”nobs”, is created that stores the number of observations in the SAS dataset,
MYDATA.

proc sql noprint;

Select strip(put(nobs,8.))

into :nobs

From DICTIONARY.TABLES

Where LIBNAME = „WORK‟ and MEMNAME = „MYDATA‟;

quit;

%put &nobs;

EXAMPLE 2

The number of variables is a dataset can be retrieved by selecting the “nvar” attribute from the Dictionary.tables. In
this example, the macro variable, “nvar”, is created that stores the number of variables in the SAS dataset, MYDATA.

proc sql noprint;

Select strip(put(nvar,8.))

into :nvar

From DICTIONARY.TABLES

Where LIBNAME = „WORK‟ and MEMNAME = „MYDATA‟;

quit;

%put &nvar;

EXAMPLE 3

The dataset creation date can be retrieved by selecting the “crdate” attribute from Dictionary.tables. The macro
variable, “vardate”, is created that stores the creation date of the SAS dataset, MYDATA. The date value is returned
in the format, “11JUL11:13:23:49”.

proc sql noprint;

Select crdate

into :vardate

SESUG 2011

9

From DICTIONARY.TABLES

Where LIBNAME = „WORK‟ and MEMNAME = „MYDATA‟;

quit;

%put &vardate;

EXAMPLE 4

This example creates a macro variable named, “vardate”, which contains the names of all files available in the
current SAS session created in 2011.

Proc sql noprint;

 Select MEMNAME

 Into :vardate separated by „ „

 From DICTIONARY.TABLES

 Where YEAR(DATEPART(CRDATE))EQ 2011;

Quit;

&put &vardate;

DICTIONARY.MEMBERS
Useful information can also be obtained from the Members table, which contains information about member types
such as tables, views and catalogs.

The PROC SQL “DESCRIBE MEMBERS” command can be used to view the structure of a dictionary member just as
it was used to describe the structure of the dictionary.columns table and the dictionary.tables table.

proc sql;

 describe table dictionary.members;

quit;

create table DICTIONARY.MEMBERS

 (

 libname char(8) label='Library Name',

 memname char(32) label='Member Name',

 memtype char(8) label='Member Type',

 dbms_memtype char(32) label='DBMS Member Type',

 engine char(8) label='Engine Name',

 index char(3) label='Indexes',

 path char(1024) label='Pathname'

);

EXAMPLE 1

Similar to dictionary.tables, the members table can also return the member names contained within a library. The
macro variable, “memname”, is created and stores the member names identified in the library “WORK”.

proc sql noprint;

Select memname

into :memname separated by „ „

From DICTIONARY.MEMBERS

Where LIBNAME = „WORK‟;

quit;

%put member names: &memname;

EXAMPLE 2

In the example below, the “path” attribute of the dictionary members table will be extracted. The paths of all datasets
available in the SAS Session will be assigned to the macro variable “mempath”.

proc sql noprint;

Select path

into :mempath separated by „ „

SESUG 2011

10

From DICTIONARY.MEMBERS

Where LIBNAME = „WORK‟;

quit;

%put member path: &mempath;

CONCLUSION
The use of Dictionary tables can perform magic in a SAS environment. Along with a SAS macro statement and
PROC SQL, valuable metadata information can be retrieved from dictionary tables. Custom made lists and
expressions that enable new variables to be assigned or variables to be renamed can be created and used in a SAS
program. This paper is only an introduction to SAS Dictionary tables; and, there is a wealth of additional information
available in SAS dictionary tables. Hopefully, this paper will inspire SAS programmers to investigate other features
of SAS dictionary tables that will enhance their SAS programs.

REFERENCES

Dilorio, Frank & Abolafia, Jeff (2004). “Dictionary Tables and Views: Essential Tools for Serious Applications” SAS
Conference Proceedings: SUGI 29, Paper 237-29.

Eberhardt, Peter. “How Do I Look it Up if I cannot Spell It: An Introduction to SAS
®

 Dictionary Tables”. SAS Global
Forum 2007, Paper 235-2007.

Varney, Brian. “Using Metadata and Project Data for Data-Driven Programming”. SAS Conference Proceedings:
SUGI 31, Paper 045-31.

Zeng, Xu. “Variable Names Don‟t Begin with the Same Characters? No Problem: How to Create Variable List
Without Copying, Pasting or Excel Intervention”. SAS Global Forum 2009, Paper 053-2009.

SAS Support http://support.sas.com

ACKNOWLEDGMENTS
I would like to thank Michael Raithel and Mike Rhoads for their guidance in helping me to prepare and present this
paper.

RECOMMENDED READING

A paper by Frank Dilorio has excellent examples of reading the dictionary.macros table and applying the extracted
information.

Dilorio, Frank. “%whatChanged: A tool for the Well-Behaved Macro” SAS Conference Proceedings: NESUG 2010,
Programming Beyond the Basics.

DISCLAIMER
The contents of this paper are the work of the author(s) and do not necessarily represent the opinions,
recommendations, or practices of Westat.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Linda Libeg

Email: LindaLibeg@westat.com

TRADEMARKS
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/
mailto:LindaLibeg@westat.com

SESUG 2011

11

APPENDIX A: SAS DICTIONARY TABLE NAMES AND DESCRIPTIONS

Table in SAS 9.2 Description
CATALOGS Contains SAS Session Catalog information

CHECK_CONSTRAINTS Contains SAS Session Check Constraint information

COLUMNS Contains SAS Session Table Information

CONSTRAINT_COLUMN_USAGE Contains column information referenced by integrity constraints

CONSTRAINT_TABLE_USAGE Contains table information for tables with defined integrity constraints

DATAITEMS Contains information about known data items

DESTINATIONS Contains information about known ODS destinations

DICTIONARIES Contains information on DICTIONARY tables and their columns

ENGINES Contains information on available SAS engines

EXTFILES Contains External Files information

FILTERS Contains information about known filters

FORMATS Contains information on available formats

FUNCTIONS Contains information about known functions

GOPTIONS Contains information on SAS/Graph options

INDEXES Contains SAS Session Index information

INFOMAPS Contains information about information maps

LIBNAMES Contains LIBNAME information

MACROS Contains SAS Session Macro information

MEMBERS Contains information about objects currently defined in SAS libraries

OPTIONS Contains Current Session options

PROMPTS Contains information about all known SAS/GRAPH prompts

PROMPTSXML Contains information about all know XML prompts

REFERENTIAL_CONSTRAINTS Contains information on Referential constraints

REMEMBER Contains information about remembered text

STYLES Contains ODS Styles

TABLE_CONSTRAINTS Contains information on Table constraints

TABLES Contains information about tables and datasets

TITLES Contains Titles and Footnote information

VIEWS Contains SAS Session information about Views

SESUG 2011

12

APPENDIX B: SAS DICTIONARY TABLES AND SASHELP VIEWS CROSSWALK

Tables in SAS 9.2 SASHELP VIEW
CATALOGS VCATALG

CHECK_CONSTRAINTS VCHKCON

COLUMNS VCOLUMN

CONSTRAINT_COLUMN_USAGE VCNCOLU

CONSTRAINT_TABLE_USAGE VCNTABU

DATAITEMS VDATAIT

DESTINATIONS VDEST

DICTIONARIES VDCTNRY

ENGINES VENGINE

EXTFILES VEXTFL

FILTERS VFILTER

FORMATS VFORMAT

FUNCTIONS VFUNC

GOPTIONS VGOPT

INDEXES VINDEX

INFOMAPS VINFOMP

LIBNAMES VLIBNAM

MACROS VMACRO

MEMBERS VMEMBER

OPTIONS VOPTION

PROMPTS VPROMPT

PROMPTSXML VPRMXML

REFERENTIAL_CONSTRAINTS VREFCON

REMEMBER VREMEMB

STYLES VSTYLE

TABLE_CONSTRAINTS VTABLE

TABLES VTABCON

TITLES VTITLE

VIEWS VVIEW

